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The Kalman Filter

The Kalman filter is the exact solution to the Bayesian filtering recursion

for linear Gaussian model
Xk41 = Firxc + Gy, Cov(vk) = Qx
Vi = Hixi + ek, Cov(ek) = Ry,
assuming E(vx) =0, E(ex) = 0, and mutual independence.
Kalman Filter Algorithm

Time update: Rit1k = FiXjk

Pii1jk = FkPkFd + GeQiGl
Rk = Rjk—1 + Ki(yx — k)
Prik = Prjk—1 — Ki Pijk—1

Ik = HiXij—1

Kk = Pig—1H{ St

Meas. update:

Ek = Yk — Yk

Sk = HiPrjk—1H{ + R«
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Nonlinear Model

Many phenomena in nature are not linear, especially measurements.

Hence, filters to handle more general nonlinear models are needed.

Nonlinear model

Consider the nonlinear model;
Xk+1 = f(Xka Vk)7

COV(Vk) = Qk
Yk = h(xk) + ex,

Cov(ek) = Rk,
assuming E(vx) =0, E(ex) = 0, and mutual independence.
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Nonlinear Transformation (NLT) (of a stochastic variable)

In many cases it is important to perform nonlinear transformations of
stochastic variables, e.g., for estimation of parameters with nonlinear
measurement models.

Problem formulation: nonlinear transfomation (NLT)
Given the transform
z = g(u)
and the mean and covariance of the input,
E(u) = py, Cov(u) =P, (often approximated u ~ N (jy, Py))
determine
E(z) =p, Cov(z) =P, (often approximated z ~ N (p, P,)).
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Let

AN K|k Pik 0
) () (% o)
z =

Xkt1 = F(Xkly1k, vic) = g(X).
Any NLT approximation (UT, MCT, TT1, or TT2) gives

(Xkr1ly1:6) = 2 ~ N (Riyajio Prsji)-
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Conditional Gaussian Distribution

Lemma 7.1 (Conditional Gaussian Distribution)

If X and Y are two jointly distributed Gaussian stochastic variables

according to
<X> NN«MX> <Pxx PXY>>
Y py ) \Pyx Pyv))’

then the conditional distribution of X, given the observed value of
Y =y, is Gaussian distributed according to

(XY = y) ~ N(ux + Pxy Pyy (y — ), Pxx — Pxy Pyy Pyx).

The Kalman filter can be derived using NLT and Lemma 7.1, which
offers a natural extension to nonlinear models, e.g., using the unscented
transform (UT) for the NLT approximation.
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General Approximate KF: measurement update
Let

o _ (Xklyik-1) _ Kijk—1 Pkjk-1 0
() () (M s
. Xk|}’1;k—1 . Xk|}/1:k—1 — (%
i < Yk ) N (h(Xk|}/1:k—17Ukaek)> g(x).
The transformation approximation (UT, MC, TT1, TT2) gives
N P PXy
Xk|k—1) klk—1 k|lk—1
z~ N[ , Ik )
((Yklk—l <'DI)</|I<1 P/{flk1>>
The measurement update is now becomes (direct application of
Lemma 7.1): A
(Xkly1:k) ~ N (R Pr)
Rijk = Rujk—1 + K (Y = Ikjk—1),
Pk = Pijk—1 — Kk Py,
K, = PY,

k|k—1
-1
k|k—1(Pl}</|yk—1) :
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Unscented Kalman Filter (UKF) Algorithm (1/2)

UKF: time update

Generate sigma points according to:

i?i Ru |k

(0) = o) (j:l

w® = 2 WD = D)
W=t W=

Usually, A = az(n—i— K)—n, o= 1073, =2, k=0
Now the updated mean and covariance are given by

X1k = E , Wt Xk+1\k

N .
Pijk—1 = Z; Owg')t(x,gillk Rir1jk) (X/EKW —>A<k+1\k)T

(O — 0 30)
Xkl+1\k = f(Xkl\k’ w")
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UKF: measurement update

Unscented Kalman Filter Algorithm (2/2)

Generate sigma points according to (weights and parameters as before):
Xk?;)(71 Rilk—1 X,(dik'L Rk k—1 b
o =1 o ) L) | = +EVa+ A ([T
k k
The updated mean and covariance are obtained as:

*),

0

)?t|t = )?t\t—l aln P:‘};_lpg{vfﬂyt - }A/t)
Pt|t = Pt|t—1 - P;(\yt—lpgﬁlpaytzl
}’t(') = h(Xt(fz—lvegl))

5= Z,N_o Q)

N y,fl)
N p 5 “ p \T
P = 2 en (" = 92 (1" = 7)
N i : g
_ () (0 < M) _ o\T
Ptx\yt—l - Z,-:o wcvt(xt\t—l - tht—l) (Yr - }/t) .
[m] [l = =
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Simulation Example (1/2)

Create a constant velocity model, simulate and Kalman filter.

2 T T v r

T =0.5; Or 1
F=[10TO0; 010T; 0010; 000 1]1;

6 = [T~2/2 05 0 T~2/2; T 0; 0 TI;

H=1[1000; 010 0];

R = 0.03xeye (2);

m = lss(F, [1, B,[1, GxG>, R, 1/T); > -2 l
m.xlabel = {2X?, ’Y’, 2vX’, JvY’};

m.ylabel = {’X’, 'Y’};

m.name = ’Constant,velocity motion model’;

z = simulate(m, 20); _4 i i
m

= nl(m); / UKF only ezist for nl models
xhatl = ukf(m, z, ’k’, 0); / Time-varying
xplot2(z, xhatl, ’conf’, 90, [1 2]1);
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Simulation Example (2/2)

Covariance illustrated as confidence ellipsoids in 2D plots or confidence bands in 1D plots.

10
x 5

0 = \ \ \ \

[xplot(z, xhatl, ’conf?’, 99) ]
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Summary

m Approximate Kalman filters for nonlinear problems can be derived
°
[ ]

using nonlinear transforms of stochastic variables.
Time update: An NLT is used to transform the current state and the
process noise to get the time at the next time step.

and measurement noise to a get a joint distribution of the state and
estimate.

Measurement update: An NLT is used to transform the current state
the measurement. Then Lemma 7.1 can be applied to get the

Statistical
Sensor Fusion

m The unscented Kalman filter (UKF) uses the unscented transform
(UT) as NLT in the above scheme.

X
o
'/ -A

m No explicit derivatives (analytic or numerical) are required.
m Captures some, but not all, second order effects.

Chapter 8 (UKF related parts)
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